Skip to main content

How Do Planes Fly?

By:Prayag nao

We take for it granted that we can fly from one side of the world to the other in a matter of hours, but a century ago this amazing ability to race through the air had only just been discovered. What would the Wright brothers—the pioneers of powered flight—make of an age in which something like 100,000 planes take to the sky each day in the United States alone? They'd be amazed, of course, and delighted too. Thanks to their successful experiments with powered flight, the airplane is rightfully recognized as one of the greatest inventions of all time. Let's take a closer look at how it works!

How do planes fly?

Forces acting on a flying plane: thrust, weight, drag, and lift
If you've ever watched a jet plane taking off or coming in to land, the first thing you'll have noticed is the noise of the engines. Jet engines, which are long metal tubes burning a continuous rush of fuel and air, are far noisier (and far more powerful) than traditional propeller engines. You might think engines are the key to making a plane fly, but you'd be wrong. Things can fly quite happily without engines, as gliders (planes with no engines), paper planes, and indeed gliding birds readily show us.
Photo: Four forces act on a plane in flight. When the plane flies horizontally, lift from the wings exactly balances the plane's weight. But the other two forces do not balance: the thrust from the engines pushing forward always exceeds the drag (air resistance) pulling the plane back. That's why the plane moves through the air.
If you're trying to understand how planes fly, you need to be clear about the difference between the engines and the wings and the different jobs they do. A plane's engines are designed to move it forward at high speed. That makes air flow rapidly over the wings, which throw the air down toward the ground, generating an upward force called lift that overcomes the plane's weight and holds it in the sky. So it's the engines that move a plane forward, while the wings move it upward.

Diagram showing Newton's third law of motion applied to the wings and engines of a plane.

How do wings make lift?


Okay, so the wings are the key to making something fly—but how do they work? In most science books, you'll read that airplane wings have a curved upper surface and a flatter lower surface, making a cross-sectional shape called an airfoil (or aerofoil, if you're British):

Photo showing airfoil wing on the NASA Centurion solar-powered plane.

When air rushes over the curved upper wing surface, it has to travel further and go slightly faster than the air that passes underneath. According to a basic theory of physics called Bernoulli's law, fast-moving air is at lower pressure than slow-moving air, so the pressure above the wing is lower than the pressure below, creating the lift that holds the plane up. Although this explanation of how wings work is widely repeated, it's not the whole story. If it were the only factor involved, planes couldn't fly upside down. Flipping a plane over would produce "downlift" and send it crashing to the ground!

Angle of attack

 the angle that a wing (or airfoil) presents to oncoming air. The greater the angle of attack, the greater the lift. The smaller the angle, the less lift. Interestingly enough, it's actually easier for an airplane to climb than it is to travel at a fixed altitude. A typical wing has to present a negative angle of attack (slanted forward) in order to achieve zero lift. This wing positioning also generates more drag, which requires greater thrust.
In general, the wings on most planes are designed to provide an appropriate amount of lift (along with minimal drag) while the plane is operating in its cruising mode. However, when these airplanes are taking off or landing, their speeds can be reduced to less than 200 miles per hour (322 kilometers per hour). This dramatic change in the wing's working conditions means that a different airfoil shape would probably better serve the aircraft. Airfoil shapes vary depending on the aircraft, but pilots further alter the shape of the airfoil in real time via flaps and slats.

Generally, the air flowing over the top and bottom of a wing follows the curve of the wing surfaces very closely—just as you might follow it if you were tracing its outline with a pen. But as the angle of attack increases, the smooth airflow behind the wing starts to break down and become more turbulent and that reduces the lift. At a certain angle (generally round about 15°, though it varies), the air no longer flows smoothly around the wing. There's a big increase in drag, a big reduction in lift, and the plane is said to have stalled. That's a slightly confusing term because the engines keep running and the plane keeps flying; stall simply means a loss of lift.

Wing vortices

Now a plane doesn't throw air down behind it in a completely clean way. Each wing actually sends air down by making a spinning vortex (a kind of mini tornado) immediately behind it. It's a bit like when you're standing on a platform at a railroad station and a high-speed train rushes past without stopping, leaving what feels like a huge sucking vacuum in its wake. With a plane, the vortex is quite a complex shape and most of it is moving downward—but not all. There's a huge draft of air moving down in the center, but some air actually swirls upward either side of the wingtips.

Wing vortex shown by colored smoke

How do planes steer?

Diagram showing the forces (lift, weight, and centripetal) on a plane as it banks at various angles.

There's a steering control in the cockpit, but that's the only thing a plane has in common with a car. How do you steer something that's flying through the air at high speed? Simple! You make the air flow in a different way past the wings on each side. Planes are moved up and down, steered from side to side, and brought to a halt by a complex collection of moving flaps called control surfaces on the leading and trailing edges of the wings and tail. These are called ailerons, elevators, rudders, spoilers, and air brakes.

One way to understand control surfaces is to build yourself a paper plane and experiment. First, build yourself a basic paper plane and make sure it flies in a straight line. Then cut or rip the back of the wings to make some ailerons. Tilt them up and down and see what effect they have in different positions. Tilt one up and one down and see what difference that makes. Then try making a new plane with one wing bigger than the other (or heavier, by adding paperclips). The way to make a paper plane steer is to get one wing to generate more lift than the other—and you can do this in all kinds of different ways!



Popular posts from this blog


By:Prayag nao

An internal expanding brake consists of two shoes S1 and S2. The outer surface of the shoes are lined with some friction material (usually with Ferodo) to increase the coefficient of friction and to prevent wearing away of the metal. Each shoe is pivoted at one end about a fixed fulcrum O1and O2 and made to contact a cam at the other end. When the cam rotates, the shoes are pushed outwards against the rim of the drum. The friction between the shoes and the drum produces the braking torque and hence reduces the speed of the drum. The shoes are normally held in
off position by a spring . The drum encloses the entire mechanism to keep out dust and moisture. This type of brake is commonly used in motor cars and light trucks.

We shall now consider the forces acting on such a brake, when the drum rotates in the anticlockwise direction. It may be noted that for the anticlockwise direction, the left hand shoe is known as leading or primary shoe while the right hand sho…

How an engine cooling system works

By: Prayag nao

Awesome iris mechanism

By:Prayag nao

An iris is a mechanism that is used as a compact solution to close and open holes. It is made up of usually a series of metal plates that can fold in on each other or expand out. Iris mechanisms are commonly found in optical shutters (diaphragms). Irises are sometimes used in science fiction as doors.